
* Fermi National Accelerator Laboratory

FERMILAB-Conf-89/124

High Level Language Memory Management on
Parallel Architectures *

P. Lebrun and A. Kreymer
Fermi National Accelerator Laboratory

P.O. Box 500, Batavia, Illinois 60.510 U.S.A.

May 1989

* Presented by P. Lebrun at the 1989 Conference on Computing in High Energy Physics, Oxford, England, April 10-14,
1989.

s Operated by Universities Research Association, Inc., under contract with the United States Department of Energy

High Level Language Memory Management
on Parallel Architedures

P. Lebmn, A. Kreymer
Computing Department

Fermi National Accelerator Laboratory*
P.O. Box 500 Batavia, Illinois 60510 USA

Abstract

HEP memory management packages such as YBQS and ZEBRA have
been implemented and are currently running on a variety of
mainframe computers. These packages were originally designed to
run on single CPU engines. Implementation of these packages on
parallel machines, loosely or tightly coupled architectures is
discussed. ZEBRA (CERN package) on ACP (Fermilab) is presented
in detail. Design of memory management system for the new
generation of ACP systems or similar parallel architectures are
presented. The future of packages such as ZEBRA is not only linked
to system architecture, but also to languages issues. We briefly
mention penalties in using F7? with rqxct to other increasingly
popular languages in HEP, such as c, on parakl systems.

INTRODUClTON

Years ago, the need for “pointer based” FORTRAN packages, such as HYDRA or BOS,
later on ZBOOK [II, ZEBRA 1’21 or YBOS, became a necessity to efficiently manage the user
heap space on a tight fixed size physical memory, in order to support large applications, such
as code management systems or histogram packages.[ll Later on, these memory management
systems were used not only to allocate dynamically space in a fixed size heap space, but also as
.s tool to organize and manage sensibly a complicate set of structures describing a detector, or an
elementary particle collision. These packages are the essential building blocks for HEP data
bases. They were designed to run mainly on single CPU systems and ignored entirely the
existence of virtual memory available within FORTRAN through - system dependent ! - system
calls.

Because of the increasing demand on memory size and CPU load, advanced hardware
architectures - parallel or vector machine - must be used in HEP analysis. As a consequence,
current FORTRAN based memory management systems such as YBOS or ZEBRA had to be
implemented on machines they were not originally designed for. This paper describes some of
the issues in doing these implementations, on parallel architectures, and discuss design rules
for future systems (not necessarily using F77 as the basic programming language). Emphasis can
not be placed only on high level software considerations, since high performance can only be
achieved on these systems if the user understands and controls the parallelism, i.e., if he is
able to map the hardware architecture lo his particular problem.

l Operated by the Universities Research Association Inc. under contract with the U.S. Depamnent of Energy.

ZEBRA 0” ACF Page 2

This paper is organized as follows : We start by reviewing some of the relevant
concepts used in describing parallel architectures. We then proceed to describe how the high
level application deals with memory transfers on parallel systems. We then discuss in more
detail the implementation of ZEBRA on ACP . We stress the inherent limitation of F77, with
respect to better suited language for memory management, such as C, which is now widely and
cheaply available.

Relevant concept on parallel architectures.

a. Concept of distributed memory 131:

A physical memory unit can be a simple data register in a CPU, or a first level cache, a
second level cache (if any), the main memory itself and finally a disk Of course, since we are
describing systems with many CPU’s, there will be more than one cache, and the “main
memory” can refer either to the memory of a single node,or alternatively, to a single central
memory shared by all the nodes in the system. These devices are connected to each other
through a - sometimes intricate - succession of Bus. From a software point of view, a data
structure can be as elementary as a bit, a word, a “bank” or a F77 array, a shuchue of banks or
arrays, or a complete data base. The key issue is to keep track of these logical constructs in the
machine and be aware when multiple copies of the same structure start diverging from each
other. Indeed, it is usually more efficient to keep multiple copies of the same information at
different physical locations, in order to access this information concurrently tram different
prxessors, to avoid bus or memxy contention

b. Private (or local) versus shared memory :

When we refer to the “private” memory with respect to a given processor, we simply
expect to be able to READ/WRITE from or to this niemory without the other processor’s (or
other Bus controller’s) permission or knowledge. A memory is shared if more than one pnxpssor
has WRlTE access to this memory.

c. “granularity” of the parallelism : tightly versus loosely coupled systems
If the local memory is small, for instance, if it simply consists of a limited size fast cache, the CPU is
likely to “miss” that cache frequently, causing lots of small transfers across the Bus. Such systems are
called tightly coupled. On the contrary, if the local memory is as big as the central, shared memory,
the entire application can run “locally” and the transfers will be “rare” and “organized”.

In general, tightly coupled systems imply a “fine grained” parallelism, where small tasks are
executed concurrently, for instance, at level of F77 loops.. Loosely coupled systems can be easily
programmed if the parallelism is “coarse” i.e., when the tasks running concurrently are time consuming
with respect to the time taken by a single transfer from shared memory to local memory.

Because of the complexity involved in managing a large number of micro-tasks running
concurrently, tine grained parallelism is usually implemented at the compiler level, or, alternatively,
the user must often completely rewrite his application in a non standard “parallel FORTRAN” 141

ZEBRA on ACF Page 3
Although we do not intend to describe in detail fine grained parallelism, we would like to stress the
crucial difference between genuine FORTRAN ant 1 a ZEBRA’based application with respect to parallel

. . FORTRAN dialects. Let us consider the following application:

. .
COMMON bXLlB/HA(ZOMW2O)
COMMON /TRACK,WZC3,10). VA410.20)
._-
w 1 I = 1.10

LmZJ=1.20
VALJIJ) = HA(I)*HB(n*SQRT~(yz(l~)**Z + XEWY2)

These loops can be executed concurrently. There are absolutely no dependencies involved.
A good parallel compiler will detect this without programmer help, because the arrays involved are
clearly and unambiguously distinct from each other.

Unfortunately , many of us do think that managing hundreds of little distinct and
unsuuctured F77 COMMON BLOCKS in a big application leads to considerable chf?iculties.
These data structures are more elegantly maintained in a single COMMON, with the help of
ZEBRA. This same code becomes [2]

. . .
COMMON fZUNAU Q(1 woo0)
DIMENSION IQ(l). W(l)
EQUIVALENCE @w. K!m
FQUIVAIENCE CW). W(9))

.
COMhiON /LNlCANA/ JCALIB. I-I-RACK

Do 1 I = 1.10
RI = I&$JIRACK-I)

DoZJ= 1.20
JLI = LQ(K!ALm -0
Q(IL.I+~O+I) = Q(JLJ+l)*Q(JL.J+ll)*

& SQRT(Q(rU+D**Z+Q(~+l~~‘*2)

Here is the problem : the user is of course aware that the pointer JCALIB and JTRACK
have distinct values, as well as the sub-bank indexes JLII and JLJ. Unfortunately, the parallel
compiler must be conservative, and assume these pointen - which are nothing but indexes to the
Q array - can take equal or “dependent” values, and there must start to either gave up on
implementing concurrent sub-tasks or install an intricate sets of locks to ensure that data won’t
be overwritten. This ‘is not achievable in general, and “automatic” parallelism is doomed
Thus, the programmer must rewrite the code, and define the inner loop instruction as a “worker”
or “micro-tasks” specific routine[SJ.

This simple example also clearly demonstrates why automatic parallel FORTRAN
compiler do exist for some commercial machines, but are not available - or not really worth
writing -for the C language : with pointer based language, one only knows at run time where
the relevant data is located; unfortunately one needs this information at compile time to
generate the appropriate code. Thus, if pointer based language is used (FORTRAN/ZEBRA,
FBX or C), the parallelism must be explicit. The user must have control over concurrency and
location of his data. If so, life is certainly easier if the concurrent tasks are as big as they can
be, to avoid a large amount of micro memory management That explains why efficient use of
ZEBRA on ACP (a very loosely coupled architecture) is possible, and has been achieved with
no rewriting of the core of ZEBRA.

Z!ZBRA on ACP Page 4

Case Study : ZEBRA on ACP (1)

The ACP (generation I) [6] is made of a host computer (a VAX or a micro-Vax) and nodes
(M68020 VME boards, their number ranges from 1 to 100) performing the bulk of the CPU
intensive operations. The host controls the I/O and acts as a master with respect to these nodes.
The local memory on the nodes is large (2 Mbyte or 6Mbyte). and can accommodate large
applications, such as the complete GEANT3 code.[7] Thus, the parallelism is coarse, always
explicit, and is achieved by invoking F77 callable functions from the ACPSYS software
package [81. The implementation of ZEBRA on ACI’ (generation I) consists of:

1. Install the memory manager MZ package, the ZEBRA debugger DZ package, and the
core of the I/O package FZ. Note that the node is not able to service interrupts, but FZ can
write a complete, self consistent buffer into a dedicated section of the local memory. This buffer
can be fetched from the host upon termination of an event.

2. Provide communication tools between the host (and I/O devices connected to it) and
the nodes, in order to transfer complete data struchnes from or to the nodes. In order to avoid
complex - and therefore slow - host/node communications, only a complete store (an entire F77
COMMON BLOCK managed by ZEBRA) or an entire DIVISION (a contiguous section of a store
) can be carried from/to the nodes. If a particular substructure has been received (or sent) to the
nodes, the user must use the FZ internal memory l/O to a dedicated set of buffers, which
themselves are contiguous in real memory on the node.

A complete description of these host routines is available from the Fermilab Computer
Department library 191 We briefly describe the following modules :

l INlT-ZEBRA-STORE : Install a ZEBRA store on the nodes. Note that all these store
copies do have exactly the same size, and that the system division is broadcast to all nodes.
This routine must be called prior to bank manipulation on the node.

l BROADCAST DIVISION : Users DIVISION can be broadcast at the beginning of the
job, before creation or deletion of structures on the node.

l SEND/GET DIVISIONS : During the event analysis phase, entire DIVISIONS can be
sent/received from generic nodes. Note that the location of these DIVISIONS in the store are
different on every node.

l READ-SEND and GET-WRITE FZ buffers : the host can READ or WRITE entire
internal FZ buffers, in order to manage very efficiently the I/O in such a complex environment.

T‘his package has been used by many groups, mostly at Fermilab. It allowed us to run
the HBOOK4 histogram package and the Monte-Carlo package GEANT3 on the ACP. This
installation was straightforward, we encountered no major difficulty. However :

1. Because ZEBRA accesses user data internally by doing its own mapping of the memory
across F77 COMMON BLOCKS boundaries, ZEBRA does not respect F77 arrays bound checks.
The ABSOm compiler had to be modified to allow “32 bit addressing range” for every memory
access, even if the array is “short” and needs only 16 bit arithmetic in computing indexes. This
is a very unpleasant feature of ZEBRA. Also, ZEBRA has implicit store to store dependencies
or communication paths: the heap space in the primary store can be used by an other store,
causing link relocation in the primary store, without explicit warning to the user.

ZEBRA on ACP Page 5

2. There is no way to enforce or check the variable type declaration in a ZEBRA store,
causing possible confusion if structures are moved across machines with different data
representations (such as VAX and M68020). Such variable declaration should be made
mandatory. Unfortunately, because of the F77 EQUIVALENCE, the user will always be able to
misrepresent data. Nevertheless, tools could be provided, such as checks for legal floating
point data if the bank is real or double precision. This problem is specific to F77, and can be
alleviated by using C.

3. ZEBRA has very flexible data structures, allowing very powerful organization of the
data. Such flexibility has a price : link relocation during garbage collection becomes very
complex, especially with links pointing outside the DIVISION being reorganized. These
reference links can point to physical memory on other processors. For the sake of simplicity,
such links were ignored in this implementation, which only “contained” DMSIONS that are
supported.

CONCLUSION

‘High level memory management packages are currently running efficiently on parallel
machines, if memory and processors are loosely coupled and if the parallelism is explicit,
controlled by the user. On a tightly coupled architecture, efficient management becomes much
harder.

YIhese implementations (YBOS, ZEBRA) are no longer laboratory exercises, they became
an essential software tool to analyze HEP data at Fermilab (CDF,E706,E705,Em..)

*Correct design of the data struchlre type and organisation matters more than the
language used in coding such a package. Although C- or F8X - are language more suitable for
memory organization, the crucial concept is data dependandes among pointer and structures, not
the language by itself. Nevertheless, fixed size COMMON BLOCKS without dynamical
memory capability is a pretty big penalty for F77. Hopefully, F77 absolute supremacy will not
dictate our software environment for ever...

Literahue cited.

1. R. Bock, EPagiola, J. Zoll et al., HYDRA Topical Manual, CERN Program Library.

R. Brun, F. Carena, H. Grote, M. Hawroul, J. Lasalle, W. Wojcik, ZBOOK User Guide
and Reference Manual, CERN Program Library.

2. R. Brun, R. Goosens and J. Zoll, ZEBRA user’s Guide , CERN Program Library
DD/EE/85.6 (1987)

ZEBRA on ACE Page 6

D. Quarrie and B. Troemel, YBOS programmers Reference Manual, CDF Compt. Group,
FERMILAB (1988).

3. S. Otto, Shared Store versus Message Passing - halftime score, to be published in the
proceeding of this conference.

4. Alan H. Karp, l’rogramming for Parallelism, Computer, May 1987 pp. 457

5. Alan H. Karp, Robert G. Babb II, A comparison of 12 Parallel FORTRAN Dialects,
IEEE software, Vol9, P 52 f 19881.

6. Donaldson, R., Kreisler M. N., eds Proc. Symp. on Rec. Dev. in computing, Processor and
Software Res. for High Energy Phys., Guanajuato, Mexico, 1984, Batavia, III, Fermilab.

7. I’. Lebrun, eds. Workshop on detector simulation for the SSC. Anl-HEP-CI’-88-51,
Argonne National Laboratory, Ill.

8. I. Gaines et al, ACP Software User’s Guide for event oriented processing, Computer
Department library, Fermilab.

9. P. Lebrun et al, ZEBRA on ACE, Computer Department Library,

